Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.459
Filtrar
1.
Pediatr Blood Cancer ; 71(6): e30970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556751

RESUMO

Langerhans cell histiocytosis (LCH) is a rare hematologic neoplasm characterized by the clonal proliferation of Langerhans-like cells. Colony-stimulating factor 1 receptor (CSF1R) is a membrane-bound receptor that is highly expressed in LCH cells and tumor-associated macrophages. In this study, a soluble form of CSF1R protein (sCSF1R) was identified by plasma proteome profiling, and its role in evaluating LCH prognosis was explored. We prospectively measured plasma sCSF1R levels in 104 LCH patients and 10 healthy children using ELISA. Plasma sCSF1R levels were greater in LCH patients than in healthy controls (p < .001) and significantly differed among the three disease extents, with the highest level in MS RO+ LCH patients (p < .001). Accordingly, immunofluorescence showed the highest level of membrane-bound CSF1R in MS RO+ patients. Furthermore, the plasma sCSF1R concentration at diagnosis could efficiently predict the prognosis of LCH patients treated with standard first-line treatment (AUC = 0.782, p < .001). Notably, dynamic monitoring of sCSF1R levels could predict relapse early in patients receiving BRAF inhibitor treatment. In vitro drug sensitivity data showed that sCSF1R increased resistance to Ara-C in THP-1 cells expressing ectopic BRAF-V600E. Overall, the plasma sCSF1R level at diagnosis and during follow-up is of great clinical importance in pediatric LCH patients.


Assuntos
Histiocitose de Células de Langerhans , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Histiocitose de Células de Langerhans/diagnóstico , Histiocitose de Células de Langerhans/patologia , Histiocitose de Células de Langerhans/sangue , Masculino , Feminino , Criança , Prognóstico , Pré-Escolar , Lactente , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/sangue , Adolescente , Estudos Prospectivos , Seguimentos
2.
J Med Chem ; 67(8): 6854-6879, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38593344

RESUMO

Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.


Assuntos
Neoplasias Colorretais , Imunoterapia , Receptor de Fator Estimulador de Colônias de Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Animais , Humanos , Camundongos , Imunoterapia/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Feminino , Descoberta de Drogas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Masculino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
3.
Eur J Med Chem ; 268: 116253, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401188

RESUMO

This study explores the potential of CSF-1R inhibitors as therapeutic agents for neurodegenerative diseases. CSF-1R, a receptor tyrosine kinase primarily expressed in macrophage lineages, plays a pivotal role in regulating various cellular processes. Recent research highlights the significance of CSF-1R inhibition in mitigating neuroinflammation, particularly in Alzheimer's disease, where microglial overactivation contributes to neurodegeneration. The research reveals a series of N-(5-amido-2-methylphenyl)-5-methylisoxazole-3-carboxamide CSF-1R inhibitors, where compounds 7d, 7e, and 9a exhibit outstanding inhibitory activities and selectivity, with IC50 values of 33, 31, and 64 nM, respectively. These most promising compounds in this series were profiled for cellular potency and subjected to in vitro pharmacokinetic profiling. These inhibitors exhibit minimal cytotoxicity, even at higher concentrations, and possess promising blood-brain barrier permeability, making them potential candidates for central nervous system diseases. The investigation into the in vitro ADME properties, including plasma and microsomal stability, reveals that these CSF-1R inhibitors maintain their structural integrity and plasma concentration. This resilience positions them for further development as therapeutic agents for neurodegenerative diseases.


Assuntos
Isoxazóis , Doenças Neurodegenerativas , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores Proteína Tirosina Quinases , Inibidores Enzimáticos
4.
Mol Biol Cell ; 35(3): ar38, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170572

RESUMO

The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.


Assuntos
Receptor de Fator Estimulador de Colônias de Macrófagos , Ubiquitina , Camundongos , Animais , Ubiquitina/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Macrófagos/metabolismo
5.
J Leukoc Biol ; 115(3): 573-582, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38038378

RESUMO

CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.


Assuntos
Monócitos , Receptor de Fator Estimulador de Colônias de Macrófagos , Camundongos , Animais , Monócitos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Citometria de Fluxo , Macrófagos/metabolismo , Diferenciação Celular
6.
Int Immunopharmacol ; 123: 110688, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499396

RESUMO

Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPß, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1ß) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1ß, decreased TGF-ß release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-ß, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.


Assuntos
Azitromicina , Fatores Estimuladores de Colônias , Receptor de Fator Estimulador de Colônias de Macrófagos , Animais , Camundongos , Antibacterianos/farmacologia , Azitromicina/farmacologia , Citocinas/metabolismo , Interleucina-12/metabolismo , Macrófagos , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos
7.
Glia ; 71(11): 2664-2678, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37519044

RESUMO

Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.


Assuntos
Leucoencefalopatias , Receptor de Fator Estimulador de Colônias de Macrófagos , Camundongos , Animais , Prednisona/farmacologia , Proteômica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Leucoencefalopatias/genética , Leucoencefalopatias/prevenção & controle , Microglia , Receptores Proteína Tirosina Quinases , Terapia de Imunossupressão
8.
J Leukoc Biol ; 114(5): 421-433, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37167456

RESUMO

Macrophages are an abundant cell population in the placenta and developing embryo and appear to be involved in processes of vascularization, morphogenesis, organogenesis, and hematopoiesis. The proliferation, differentiation, and survival are dependent on signals from the macrophage colony-stimulating factor receptor, CSF1R. Aside from the role in macrophages, Csf1r mRNA is highly expressed in placental trophoblasts. To explore the function of macrophages and Csf1r in placental and embryonic development, we analyzed the impact of homozygous Csf1r null mutation (Csf1rko) in the rat. In late gestation, IBA1+ macrophages were abundant in control embryos in all tissues, including the placenta, and greatly reduced in the Csf1rko. CSF1R was also detected in stellate macrophage-like cells and in neurons using anti-CSF1R antibody but was undetectable in trophoblasts. However, the neuronal signal was not abolished in the Csf1rko. CD163 was most abundant in cells forming the center of erythroblastic islands in the liver and was also CSF1R dependent. Despite the substantial reduction in macrophage numbers, we detected no effect of the Csf1rko on development of the placenta or any organs, the relative abundance of vascular elements (CD31 staining), or cell proliferation (Ki67 staining). The loss of CD163+ erythroblastic island macrophages in the liver was not associated with anemia or any reduction in the proliferative activity in the liver, but there was a premature expansion of CD206+ cells, presumptive precursors of liver sinusoidal endothelial cells. We suggest that many functions of macrophages in development of the placenta and embryo can be provided by other cell types in their absence.


Assuntos
Células Endoteliais , Placenta , Ratos , Feminino , Animais , Gravidez , Células Endoteliais/metabolismo , Placenta/metabolismo , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Desenvolvimento Embrionário , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo
9.
J Virol ; 97(4): e0010223, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022164

RESUMO

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Assuntos
Interferon Tipo I , Infecções por Orthomyxoviridae , Receptor de Fator Estimulador de Colônias de Macrófagos , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Humanos , Camundongos , Vírus da Influenza A/imunologia , Interferon Tipo I/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Infecções por Orthomyxoviridae/imunologia , Hematopoese/imunologia , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Streptococcus pneumoniae/imunologia , Infecções Pneumocócicas/imunologia
10.
AIDS ; 37(9): 1419-1424, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37070549

RESUMO

OBJECTIVE: Neuroimmune activation is a putative driver of cognitive impairment in people with HIV (PWH), even in the age of modern antiretroviral therapy. Nevertheless, imaging of the microglial marker, the 18 kDa translocator protein (TSPO), with positron emission tomography (PET) in treated PWH has yielded inconclusive findings. One potential reason for the varied TSPO results is a lack of cell-type specificity of the TSPO target. DESIGN: [ 11 C]CPPC, 5-cyano- N -(4-(4-[ 11 C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxaminde, is a radiotracer for use with PET to image the colony stimulating factor 1 receptor (CSF1R). The CSF1R is expressed on microglia and central nervous system macrophages, with little expression on other cell types. We used [ 11 C]CPPC PET in virally-suppressed- (VS)-PWH and HIV-uninfected individuals to estimate the effect sizes of higher CSF1R in the brains of VS-PWH. METHODS: Sixteen VS-PWH and 15 HIV-uninfected individuals completed [ 11 C]CPPC PET. [ 11 C]CPPC binding (V T ) in nine regions was estimated using a one-tissue compartmental model with a metabolite-corrected arterial input function, and compared between groups. RESULTS: Regional [ 11 C]CPPC V T did not significantly differ between groups after age- and sex- adjustment [unstandardized beta coefficient ( B ) = 1.84, standard error (SE) = 1.18, P  = 0.13]. The effect size was moderate [Cohen's d  = 0.56, 95% confidence interval (CI) -0.16, 1.28), with strongest trend of higher V T in VS-PWH in striatum and parietal cortex (each P  = 0.04; Cohen's d  = 0.71 and 0.72, respectively). CONCLUSIONS: A group difference in [ 11 C]CPPC V T was not observed between VS-PWH and HIV-uninfected individuals in this pilot, although the observed effect sizes suggest the study was underpowered to detect regional group differences in binding.


Assuntos
Encéfalo , Infecções por HIV , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Microglia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Imagem Molecular
11.
Eur J Pharm Sci ; 185: 106427, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948408

RESUMO

Prostate cancer remains a serious condition threatening the health of men. Due to the complicated nature of the tumour microenvironment (TME), conventional treatments face challenges including poor prognosis and tumour resistance, therefore new therapeutic strategies are urgently needed. Small interfering RNA (siRNA), a double-stranded non-coding RNA, regulates specific gene expression through RNA interference. Tumour-associated macrophages (TAMs) are a potential therapeutic target in cancer immunotherapy. Colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway plays a crucial role in the polarization of the immunosuppressive TAMs, M2 macrophages. Downregulation of CSF-1R is known to reprogram the immunosuppressive TAMs, M2 macrophages, to the immunostimulatory phenotype, M1 macrophages. Sialic acid is a ligand for Siglec-1 (CD169) which is overexpressed on M2 macrophages with little expression in other phenotypes. Therefore, a sialic acid-targeted cyclodextrin-based nanoparticle was developed to specifically deliver CSF-1R siRNA to M2 macrophages. The nanoparticles were studied in vitro using both human and mouse prostate cancer cell lines. Results show that the targeted nanoparticles achieved cell specific delivery to M2 macrophages via the sialic acid-CD169 axis. The expression of CSF-1R was significantly downregulated in M2 macrophages (29.64% for targeted vs 19.31% for non-targeted nanoparticles in THP-1-derived M2 macrophages and 38.94% for targeted vs 18.51% for non-targeted nanoparticles in RAW 264.7-derived M2 macrophages, n = 4, p < 0.01). The resulting reprograming of M2 macrophages to M1 enhanced the level of apoptosis in the prostate cancer cells in a Transwell model (49.17% for targeted vs 37.68% for non-targeted nanoparticles in PC-3 cells and 69.15% for targeted vs 44.73% for non-targeted nanoparticles in TRAMP C1 cells, n = 3, p < 0.01). Thus, this targeted cyclodextrin-based siRNA drug delivery system provides a potential strategy for prostate cancer immunotherapy.


Assuntos
Ciclodextrinas , Nanopartículas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Fatores Estimuladores de Colônias , Imunoterapia/métodos , Ácido N-Acetilneuramínico , Nanopartículas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral , Macrófagos Associados a Tumor , Receptor de Fator Estimulador de Colônias de Macrófagos/genética
13.
Hum Cell ; 36(1): 456-467, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36456782

RESUMO

Tenosynovial giant cell tumor (TGCT) is a mesenchymal tumor derived from the synovium of the tendon sheath and joints, most frequently in the large joints. The standard of care for TGCTs is surgical resection. A new targeting approach for treating TGCTs has emerged from studies on the role of the CSF1/CSF1 receptor (CSF1R) in controlling cell survival and proliferation during the pathogenesis of TGCTs. We established four novel cell lines isolated from the primary tumor tissues of patients with TGCTs. The cell lines were designated Si-TGCT-1, Si-TGCT-2, Si-TGCT-3, and Si-TGCT-4, and the TGCT cells were characterized by CSF1R and CD68. These TGCT cells were then checked for cell proliferation using an MTT assay and three-dimensional spheroid. The responses to pexidartinib (PLX3397) and sotuletinib (BLZ945) were evaluated by two-dimensional MTT assays. All cells were positive for α­smooth muscle actin (α­SMA), fibroblast activation protein (FAP), CSF1R, and CD68. Except for Si-TGCT-4, all TGCT cells had high CSF1R expressions. The cells exhibited continuous growth as three-dimensional spheroids formed. Treatment with pexidartinib and sotuletinib inhibited TGCT cell growth and induced cell apoptosis correlated with the CSF1R level. Only Si-TGCT-4 cells demonstrated resistance to the drugs. In addition, the BAX/BCL-2 ratio increased in cells treated with pexidartinib and sotuletinib. With the four novel TGCT cell lines, we have an excellent model for further in vitro and in vivo studies.


Assuntos
Tumor de Células Gigantes de Bainha Tendinosa , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Tumor de Células Gigantes de Bainha Tendinosa/tratamento farmacológico , Tumor de Células Gigantes de Bainha Tendinosa/genética , Linhagem Celular
14.
Glia ; 71(3): 775-794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433736

RESUMO

Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , Adulto , Camundongos , Animais , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ansiedade/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Cerebelo/metabolismo
15.
Chem Biol Interact ; 369: 110255, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368339

RESUMO

Macrophage colony-stimulating factor (M-CSF, also known as CSF1) in tumor tissues stimulates tumor growth and tumor-induced angiogenesis through an autocrine and paracrine action on CSF1 receptor (CSF1R). In the present study, novel bioisosteres of pexidartinib (1) were synthesized and evaluated their inhibitory activities against CSF1R kinase and tumor growth. Among newly synthesized bioisosteres, compound 3 showed the highest inhibition (95.1%) against CSF1R tyrosine kinase at a fixed concentration (1 µM). The half maximal inhibitory concentration (IC50) of pexidartinib (1) and compound 3 was 2.7 and 57.8 nM, respectively. Unlike pexidartinib (1), which cross-reacts to three targets with structural homology, such as CSF1R, c-KIT, and FLT3, compound 3 inhibited CSF1R, c-KIT, but not FLT3, indicating compound 3 may be a more selective CSF1R inhibitor than pexidartinib (1). The inhibitory effect of compound 3 on the proliferation of various cancer cell lines was the strongest in U937 cells followed by THP-1 cells. In the case of cancer cell lines derived from solid tumors, the anti-proliferative activity of compound 3 was weaker than pexidartinib (1), except for Hep3B. However, compound 3 was safer than pexidartinib (1) in terminally differentiated normal cells such as macrophages. Pexidartinib (1) and compound 3 suppressed the production of CSF1 in Hep3B liver cancer cells as well as in the co-culture of Hep3B cells and macrophages. Also, pexidartinib (1) and compound 3 decreased the population ratio of the M2/M1 phenotype and inhibited their migration. Importantly, compound 3 preferentially inhibited M2 phenotype over M1, and the effect was about 4 times greater than that of pexidartinib (1). In addition, compound 3 inhibited maintenance of cancer stem cell population. In a chick chorioallantoic membrane (CAM) tumor model implanted with Hep3B cells, tumor growth and tumor-induced angiogenesis were significantly blocked by compound 3 to a similar extent as pexidartinib (1). Overall, compound 3, a bioisostere of pexidartinib, is an effective dual inhibitor to block CSF1R kinase and CSF1 production, resulting in significant inhibition of tumor growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico
16.
Pharmacol Res ; 187: 106566, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423789

RESUMO

Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.


Assuntos
Inflamação , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ligantes , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/farmacologia
17.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555673

RESUMO

Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding, the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells. Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of prostate cancer.


Assuntos
Osteopontina , Neoplasias da Próstata , Receptor de Fator Estimulador de Colônias de Macrófagos , Animais , Humanos , Masculino , Camundongos , Ligantes , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteopontina/genética , Neoplasias da Próstata/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
18.
Curr Osteoporos Rep ; 20(6): 516-531, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197652

RESUMO

PURPOSE OF REVIEW: The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis. RECENT FINDINGS: Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors. Loss-of-function mutations in CSF1 or CSF1R lead to loss of OCL and macrophages and dysregulation of postnatal bone development. MPS cells continuously degrade CSF1R ligands via receptor-mediated endocytosis. As a consequence, any local or systemic increase or decrease in macrophage or OCL abundance is rapidly reversible. In principle, both CSF1R agonists and antagonists have potential in bone regenerative medicine but their evaluation in disease models and therapeutic application needs to carefully consider the intrinsic feedback control of MPS biology.


Assuntos
Doenças Ósseas , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Imunoterapia , Homeostase/genética , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/metabolismo
19.
Cell Death Dis ; 13(10): 859, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209194

RESUMO

Sustained oxidative stress in castration-resistant prostate cancer (CRPC) cells potentiates the overall tumor microenvironment (TME). Targeting the TME using colony-stimulating factor 1 receptor (CSF1R) inhibition is a promising therapy for CRPC. However, the therapeutic response to sustained CSF1R inhibition (CSF1Ri) is limited as a monotherapy. We hypothesized that one of the underlying causes for the reduced efficacy of CSF1Ri and increased oxidation in CRPC is the upregulation and uncoupling of endothelial nitric oxide synthase (NOS3). Here we show that in high-grade PCa human specimens, NOS3 abundance positively correlates with CSF1-CSF1R signaling and remains uncoupled. The uncoupling diminishes NOS3 generation of sufficient nitric oxide (NO) required for S-nitrosylation of CSF1R at specific cysteine sites (Cys 224, Cys 278, and Cys 830). Exogenous S-nitrosothiol administration (with S-nitrosoglutathione (GSNO)) induces S-nitrosylation of CSF1R and rescues the excess oxidation in tumor regions, in turn suppressing the tumor-promoting cytokines which are ineffectively suppressed by CSF1R blockade. Together these results suggest that NO administration could act as an effective combinatorial partner with CSF1R blockade against CRPC. In this context, we further show that exogenous NO treatment with GSNOR successfully augments the anti-tumor ability of CSF1Ri to effectively reduce the overall tumor burden, decreases the intratumoral percentage of anti-inflammatory macrophages, myeloid-derived progenitor cells and increases the percentage of pro-inflammatory macrophages, cytotoxic T lymphocytes, and effector T cells, respectively. Together, these findings support the concept that the NO-CSF1Ri combination has the potential to act as a therapeutic agent that restores control over TME, which in turn could improve the outcomes of PCa patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Cisteína , Humanos , Fator Estimulador de Colônias de Macrófagos , Masculino , Óxido Nítrico , Óxido Nítrico Sintase Tipo III , S-Nitrosoglutationa , Microambiente Tumoral
20.
Bioorg Med Chem Lett ; 74: 128928, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961460

RESUMO

Based on knowledge of kinase switch-control inhibition and using a combination of structure-based drug design and standard medicinal chemistry principles, we identified a novel series of dihydropyrimidone-based CSF1R kinase inhibitors displaying exquisite selectivity for CSF1R versus a large panel of kinases and non-kinase protein targets. Starting with lead compound 3, an SAR optimization campaign led to the discovery of vimseltinib (DCC-3014; compound 20) currently undergoing clinical evaluation for the treatment of Tenosynovial Giant Cell Tumor (TGCT), a locally aggressive benign tumor associated with substantial morbidity. 2021 Elsevier ltd. All rights reserved.


Assuntos
Antineoplásicos , Tumor de Células Gigantes de Bainha Tendinosa , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptor DCC , Tumor de Células Gigantes de Bainha Tendinosa/tratamento farmacológico , Tumor de Células Gigantes de Bainha Tendinosa/patologia , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Receptor de Fator Estimulador de Colônias de Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...